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Signal Integrity Impairments In High-Speed Buses

— Slissues limit system performance to
well below channel Shannon capacity

— Inter-Symbol Interference (ISI) is an
issue for long backplane buses

— For short, low-cost parallel links,
dominant noise source is crosstalk

* Far-end crosstalk (FEXT) induces
timing jitter (ClJ), impacts timing budget

— Other Sl impairments:
* Simultaneous-switching (SSO) noise

* Thermal noise
e Jitter from PLL/DLL
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Insertion loss of a single DDR channel
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Channel Impairments

* Modern computer systems require Tb/s aggregate

off-chip signaling throughput 1600 60
—e— Number of I/0s

— Interconnect resources are limited | Rl i 50 _
* Parallel buses with fast edge 8 1400 4g§
rates must be used 5 3
_ £1300 30 &
— Stringent power and BER : 2
requirements to be met e -

1100 10

10003505 7010 2015 L

— High-performance signaling

requires high—cost channels Available number and required speed of I/Os
(ITRS roadmap)

* Difficult to design and costly ——
to manufacture ﬁ i
. . . . m
— One of main limiting factors: Conroterpackage
Memorypackage
crosstalk-induced jitter el
I PCBtrace Solderball —_
je— PCBVA PCBvia —|

A typical controller-memory interface
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Equalization
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Off-chip bandwidth scales at a much lower rate

than on-chip bandwidth. Primary objective is to
have low bit error rate (BER). Typical BER is 10-12.
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Equalization
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Frequency shaping filters that flatten the channel
response up to a certain frequency. Objective is to
improve BER and increase eye opening.
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Pre-Emphasis and Equalization

* Pre-emphasis boosts the high-frequency contents of
the signal at the transmitter before the signal is sent
through the channel.

* A two-tap finite impulse response (FIR) filter is an
example of pre-emphasis implementation.

* Pre-emphasis has high power requirements,
aggravates crosstalk and increase EMI.

* Pre-emphasis cannot improve SNR

* Data converters are required to implement pre-
emphasis
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Receiver Equalization

* The loss in the channel is suppressed by boosting
the high-frequency content of the signal.

* Often results in larger noise margins.

* Receivers can be implemented in discrete-time or
continuous time.

* Implementations include digital FIR equalizer,
analog FIR equalizer, continuous time equalizer.
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Equalization Techniques

original

attenuate low frequency

boost high frequency
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Continuous Time Passive Equalizer

CI
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% 7Re, .
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R 1+ RC s
H(s) = - 2R — 11
1T 1 2 (C 4+ Cy)s
R +R,
, neaml:{éﬁlfN.Lgl{s ECE 546 — Jose Schutt-Aine 10




Channel-Equalization

Typical Channel Response w/o Equalization:

Driver Receiver

PCB. connectors. cables

A
S Simt WEEERNPSVSS

. Equahzatlon at TX and RX needed to counter the
effects of channel, properly decode signals.

Output
Waveform

« TX: FFE (Feed-Forward Equalizer)

* RX: DFE (Decision-Feedback Equalizer)

D. R. Stauffer et al., “High Speed Serdes Devices and Applications”, Springer 2008
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FFE Circuit Architecture

Typical Channel Response at Receiver with FFE at TX:

Driver with
integrated FFE Receiver

@ ‘ : PCB. connectors. cables

. e r—w Equalized
eemphasis Waveform
Example Using — LHM ‘ -_JL.-J

Integrated FFE

 FFE taps selected to

generate a filter with
serial the inverse transfer-
data function as that of
channel.

Sample 3-tap FFE Architecture:

driver . Trade-off b/w signal
output amplitude at receiver

_ 3-tap FFE _ and jitter.
D. R. Stauffer et al., “High Speed Serdes Devices and Applications”, Springer 2008
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DFE Circuit Architecture

Typical Channel Response at Receiver with DFE at RX:

Receiver
Driver with Equalization

PCB. connectors, cables

F———

)7
N A
3 Ehimy s O

DFE is needed in links
with a high-baud rate to
min. signal ampl. at
high freq. caused by

channel jitter.

Equalized

Waveform

Sample 5-tap DFE Architecture:

serial
data

Filter weights selected
dynamically in a
teedback loop to max.
eye opening.

D. R. Stauffer et al., “High Speed Serdes Devices and Applications”, Springer 2008
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FFE vs. DFE

* FFE * DFE
«  Can mitigate the pre-cursor « Cannot equalize ISI arising
channel response in low-BW from pre-cursor channel
channels. response.
*  Can compensate ISI arising « Can only compensate ISI
from transient TL loss over from a fixed time-span.

wide time-spans.

FFE + DFE
e Guarantees max. performance from the SerDes.
e Advantage:

— DFE permits use of low-frequency de-emphasis at TX resulting in
a larger received signal envelope, smaller signal/crosstalk ratio.

— System capable of employing continuous adaptive equalization of
its feedback taps to optimize performance.
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Equalization Techniques

 CTLE (Continuous-Time Linear Equalizer) Basics
* FFE (Feed-Forward Equalizer) Basics

 DFE (Decision Feedback Equalizer) Basics

* More Complex Equalization
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Continuous Time Linear Equalization

* Goal: To counteract the effects of the
channel’s transfer function (s-domain)

 Accomplished via amplification

— More amplification at operating frequency

— Less amplification at << operating frequency (DC
Gain)

— Reduce higher frequency noise
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Drawbacks of CTLE Design

 Drawbacks of RX CT Equalization:

— Amplifying signal also amplifies noise + crosstalk
(SNR stays same)

— Trade-off: High Gain + Output Swing vs. Small Size +
Low Power Consumption

* When designing CTLE, need to iterate in order
to optimize on all of these ends

 Still need to utilize filtering for noise and
crosstalk
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Continuous Time Linear Equalizer
(CTLE)

— Pros

 Single block = lower power
consumption and smaller
sizing

e Easy to cancel precursor and

more ISI T 0O - O S

— Cons

* Noise+Crosstalk amplified as
well

e Hard to tune
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Continuous Time Linear Equalizer

(CTLE)

* Active equalizer topology
shown to right

* Differential amplifier with
degeneration

— Introduces an extra pole and
Zero

— Total: One zero, two poles

* Transfer Function = Peaking
Amplifier
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Equations for CTLE (Derived from Circuit)

1

Gm S+Hf‘ 1
His) = plp
[) CL[ + mH +1}{S RL(‘L)
1
W, =
RpCh
{.:.11=ng5+1
P RpCp
o]
P27 R.CyL
DC Gm’n:gg;Ril
mL L)
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CTLE Design Process

1) Choose DC Gain and Peaking Gain (use insertion loss
curve)

2) Decide optimal poles and zero frequency placements

3) Determine load capacitance from next stage (CDR
input)

4) Determine equalizer output swing
5) Calculate component parameters to meet above specs
6) Test and optimize as necessary (iterative process)
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CTLE Transfer Function (Bode Plot)

CTLE AC Response
15

T

T T T
: : . ¥ 2.584e+09
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Effects of CTLE (Eye Diagram)

* Eyes
— Yellow = TX end

— Green = Post-
Channel

— Red = Post-EQ
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Precursors and Postcursors

Postcursors

P L

Precursor Main Postcursors
\ gl
i Ha
—_—— time T ? g v P
(2 (05T 0T e AT 2T (3T -1 @0 [ R iridlea
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Understanding FFE

* Pros
— Simple to implement
— Doesn’t amplify noise
— Easily cancels
precursors
* Cons

— Signal Attenuated due
to peak-power
limitation (output
swing limit)

— Hard to tune taps
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FFE Coefficient Calculation

* Need to calculate FFE
coefficients such that
convolution with
channel results in Axb=c
solely the main cursor

(ag a_y, 0 0 071 [b,] [0
— A = channel coefficients a a a0 0 bo 1
s I g () X | by ()
— b = FFE coefficients e @y a4y ag a_y by 0
. i 0 s 2 11 fp | i h‘.} i __U_.
—C= equallzed response
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FFE Coefficient Calculation

(Only precursor)

* When solely eliminating precursor, matrix
becomes:

— Only b_; and b, matter to eliminate precursor

 Appending an extra zero at beginning in order to
properly account for full sampled response

e A-matrix goes down to n amount of postcursors

— Can match number with number of FFE
coefficients

— However, more postcursors = more IS|
eliminated
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Full FFE

Effects

Precursor Only

04}— *

: (b)
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Actual FFE Design: Normalize Coefficients

e Why?
— Output swing is limited by 2
headroom of design

— Extra taps = reduction of
cursor’s tap weight —
* In order to account for “(f %;
limitations, currents must add
up to equal output

termination current, meaning

that:
IxZh|=1 = X|b=1
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Understanding the DFE

Updated Channel S-Parameters
T T T

=

e Continuous-Time
Transfer Function of
Channel (s-domain):

o
i |
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— Low Pass Filter
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Understanding the DFE

e Discrete-Time Transfer Function of the Channel
(z-domain):

Hl(Z) =1+ alz'l + a22‘2 + a32'3 x[n] + a,;x[n-1] + a,x[n-2] + a;x[n-3]
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Simple DFE System
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Understanding the DFE

* Pulse Response of

Channel: |
1 1 T LETLIE
R . (R (AT AT b LR o 2T e 5T
— Top = Continuous Time
Plot ol
— Bottom = Sampled Plot
i, Aj
LEL‘#
=l il | 2 k| imier
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Pulse Response (Testbench)

EGE LLINOIS
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Normalized Pulse Response

Mormalized Channel Response

 Next, normalize the
pulse response:

— Set time of peak = n*T

Response

— Post cursors =

Response(T*(n+1)),

Response(T*(n+2)), i S

ResponSE(T*(n+3)), e aaﬁn o 7:#3"0“(;:'33 7600 ?aﬁn 0
"'"'ILLINOIS
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Post Cursor Calculations

e Calculated Postcursors: Postcursor a, = 0.2605

Postcursor ay; = (0.104
Postecursor az; = (0.0588
Postecursor ay = 0.0387

Posteursor a = (0.0284
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Understanding the DFE

* Objective: Negate the effects of the
post-cursors (a,, a,, a; ) through
feedback FIR filter and accurate
sampling (decision circuit) O

—"DRI

— Pros:

* No amplification of noise+crosstalk

* Can make feedback filter adaptive

— Cons:

Mojed ™ fe—wew ] ™M fed M e

e Can only account for post-cursors (no
pre-cursors)

* Critical feedback timing path
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DFE Tap Coefficients

* |f channel causes
postcursors a,, a,, a,, etc.,

* DFE tap coefficients must
negate postcursors

* Thus, DFE tap coefficient:
= negative postcursors

M, e

& s
i

(I (I aT T (e 2/T o 5T

M le— see +
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N,
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Implementation of DFE

/{verilog-AMS HDL for "eceS46", "dfe_sampler” "verilogams™

“include "constants.vams”
“include "disciplines.wvams”

module dfe_sampler (in, inbar, out, outbar, Dout, clk, rst);
input in, inbar, clk, rst;

ocutput reg Dout;

output cut, outbar;

electrical in, inbar, out, outbar;

logic clk, rst;

e

parameter real tapl =
parameter real tap2 =
parameter real tap3 =
parameter real tap4 =
parameter real taps =

" e

i

GJGJPEE

reg[4:@] data_history;

analog begin
V{out) <+ slew(V(in
(2*data_history[3]-1)+tap5s™*
V{outbar) <+ slew(V
(2*data_history[3]-1)-tap5s*
end

+tapl*(2%data_history[08]-1)+tap2*(2*data_history[1]-1)+tap3*(2*data_history[2]-1)+tapd*
2*data_history[4]-1),1e11, 1e11);
inbar)-tapl*(2*data_history[@]-1)-tap2*(2*data_history[1]-1)-tap3*(2*data_history[2]-1)-tapd*
2*data_history[4]-1),1e11, 1e11);

iy

alwaysf({posedge(clk), rst) begin

if(rst) begin
data_history <= 5'b20022;
Dout <= 1'be;
end
else begin
if(Viout) - V{outbar) » 2.2}
Dout <= 1'b1;
else if (V(out) - W{outbar) < -8.2)
Dout <= 1'b@;
data_history[4:8] = {data_history[3:8],Dout};
end
end

endmoduls
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Effects of DFE (Eye diagram)

6Ghis h}r-a Reﬂned BP Lhmmal w/ Nﬂ Eq 6Gb/s Eye - Refined BP Channel w/ RX DFE Eq
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MORE COMPLEX
EQUALIZATION (SETUP)

* Full equalization setup with FFE + CTLE + DFE (in

SERDES)

TXFIR RX CTLE + DFE

Equalization Equalization -
- E Channel ﬂ
o013 (it @ HPRBE |
5 @
e
v - [ - 2
|
TX Clk f RX Clk
Generation Recovery
(PLL) (CDOR/Fwd Clk)
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COMPLEX EQUALIZATION DESIGN
PROCESS

1) Design CTLE to account for as much loss @
operating frequency

2) Design RX Driver Amp to account for remaining loss
(~5-10 dB)
3) Analyze pulse response of channel+CTLE+RX Driver

to calculate FFE coefficients (solely precursor) and
test FFE behaviorally

4) Analyze pulse response again (no precursor this
time) to determine postcursors for DFE coefficients
and test DFE behaviorally
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